R Base and Advanced Programming - Dvanalytics
dvanalytics whatsapp contact
dvanalytics whatsapp

R Base and Advanced Programming

0 STUDENTS ENROLLED

    R Programming Base and Advanced- Get an exposure to R statistical programming from Industry experts. In this course you will learn RDBMS programming to statistical exploratory data analysis

    Course Curriculum

    Session - 1
    What is R 00:00:00
    Installation guide to R 00:00:00
    Basic features of R 00:00:00
    R resources 00:00:00
    Limitation of R 00:00:00
    R Nuts and Bolts 00:00:00
    <ul> <li>Entering Input , Evaluation, R Objects, Numbers, Attributes, Creating Vectors, Mixing Objects, Explicit Coercion, Matrices, Lists, Factors, Missing Values, Data Frames, Names, Summary</li> </ul>
    Session - 2
    R data reading importing and exporting 00:00:00
    <ul> <li>Reading and Writing Data</li> <li>Reading Data Files with read.table()</li> <li>Reading in Larger Datasets with read.table</li> <li>Calculating Memory Requirements for R Objects</li> </ul>
    Session - 3
    R packages 00:00:00
    Using Textual and Binary Formats for Storing Data 00:00:00
    File connections 00:00:00
    Reading Lines of a Text File 00:00:00
    Reading from a URL Connection 00:00:00
    Subsetting R Objects 00:00:00
    <ul> <li>Subsetting a Vector, Subsetting a Matrix, Subsetting a Lists, Subsetting Nested Elements of a List, Extracting Multiple Elements of a List, Partial Matching, Removing NA Values</li> </ul>
    Session - 4
    R Functions (String, Numeric and Datetime) 00:00:00
    Loop Functions 00:00:00
    <ul> <li>Looping on the Command Line, lapply(), sapply(), split(), splitting a data frame, tapply(), apply(), Col/Row sums and means, Other ways to apply, Mapply(), Vectorizing a function</li> </ul>
    Scoping rules of R 00:00:00
    Session - 5
    Managing Data Frames with the dplyr package 00:00:00
    <ul> <li>Data Frames</li> <li>Merge Data Frames in R: Full and Partial Match</li> <li>The dplyr Package</li> <li>dplyr Grammar</li> <li>Installing the dplyr Package <ul> <li>Select(), Filter(), Arrange(), Rename(), Mutate(), Group_by(), %>%, Summary</li> </ul> </li> </ul>
    Session - 6
    Control structure 00:00:00
    <ul> <li>If Else, For Loops, Nested for Loops, While Loops, Repeat Loops, Next, Break, Summary</li> </ul>
    Debugging 00:00:00
    R profiling 00:00:00
    <ul> <li>Generating Random Numbers, Setting the random number seed, Simulation a Linear Model, Random Sampling</li> </ul>